

Section 14 ARC Lessons Learned Stan Farkas STS-107 Fundamental Biology Project NASA Ames Research Center

ARC Lessons Learned

• Approach

- Database developed to catalogue lessons learned from:
 - Neurolab
 - STS-95
 - NIH.R4
 - Recent reviews and recommendations
- Lessons will be reviewed and catalogued by impact area, appropriateness to STS-107 Project and recommended actions.
- The database will be updated and actions to be implemented will be tracked.
- Lessons from STS-107 will be added to the database and the file will be made available to future project teams.

ARC Lessons Learned

- Major findings
 - At this time the Lessons Learned electronic database is still under review by the team.

- Implementation of Findings
 - Once actions are identified the responsible discipline will provide regular status to Project Management until the action has been closed.

Section 15 ARC Risk Management Stan Farkas

STS-107 Fundamental Biology Project NASA Ames Research Center

STS-107

- Risks include Schedule, Cost, Technical, and Safety
- The Risk management process is defined in the STS-107 Fundamental Biology Project Risk Management Plan
 - Risks will be identified for all areas of the project.
 - Risks will be analyzed for probability of occurrence and severity/impact on the project. Related risks will be grouped, and prioritized.
 - A plan of action and schedule will be developed for mitigating or resolving each risk.
 - Each risk will be tracked and reviewed periodically to determine if the risk has been resolved, eliminated, or controlled.

Methodology

- Risk severity and probability attribute definitions (STS-107)
 - Severity
 - ▲ I- Catastrophic
 - + Schedule: Major slip in milestone schedule
 - + Cost: ≥ 25% increase to project cost; > 25% budget cut
 - + Technical: Unable to achieve all project requirements and/or some loss of project scope or goals.
 - + Safety: Loss of life and/or disabling injury

▲ II - Critical

- + Schedule: Moderate slip in milestone schedule
- + Cost: $10\% \ge$ increase to project cost < 25%; 10% > budget cut < 25%
- + Technical: Unable to achieve most project requirements and/or loss of most project scope and goals
- + Safety: Severe but recoverable injury

▲ III - Negligible

- Schedule: Insignificant slip in milestone schedule
- + Cost: < 10% increase to project cost
- Technical: No or minor loss of project requirements and/or no loss to project scope or goals
- Safety: No injury

- Methodology (Continued)
 - Probability of Occurrence
 - ▲ A-Probable Highly likely to happen
 - ▲ B-Infrequent Could happen
 - ▲ C-Remote Highly unlikely to happen

• Methodology (Continued)

RISK ASSESSMENT MATRIX

	Severity		
	I	ΙΙ	ΙΙΙ
Probability			
\mathbf{A}	H	H	M
В	H	M	\mathbf{L}
\mathbf{C}	M	\mathbf{L}	L

H - High Risk	M - Medium Risk	L - Low Risk
A - Probable	B- Infrequent	C - Remote
I - Catastrophic	II - Critical	III - Negligible

- Risk Management Results
 - The STS-107 Fundamental Biology Project Risk Management Plan has been baselined
 - Risk assessment has been started
 - Several high and medium risk items have been identified in the areas of project management, science, operations, and crew training
 - We are in the process of analyzing these risks and defining the approach for resolution.
 - Some mitigation has been implemented

Section 16 ARC Development Status Stan Farkas

STS-107 Fundamental Biology Project NASA Ames Research Center

STS-107

Schedule

- All SPACEHAB milestones and deliverable dates have been met based on STS-107 Schedule dated 4-21-00 and STS-107 Preliminary Training Schedule Rev. B (Launch 2-22-01)
- Uncertain of several tasks on STS-107 schedules.
 - Information in the updated training questionnaire submitted to MMO is not reflected in the STS-107 Preliminary Training Schedule Rev. B
 - The requirement for training dry-runs is not reflected in the STS-107 Preliminary Training Schedule Rev. B
- The Inflight Refill Unit and CO2 system training hardware will not be available to support Hands-on Training per STS-107 Preliminary Training Schedule Rev. B (Launch 2-22-01)

- Schedule (Continued)
 - Some internal project planning documents were finished late or are currently under development.
 - Due to:
 - ▲ Addition of Euthanasia requirements
 - **▲ Change of location from Middeck to SPACEHAB**
 - ▲ Change of PI complement
 - Requires addition of hardware to support changes
 - ▲ CO₂ system
 - ▲ Inflight Refill Unit and contingency back-up unit
 - Impacts
 - **▲** Hardware Development
 - **▲** Operations
 - **▲** Engineering/Stowage

Budget

- Budget submitted for Program Operating Plan 2000. SL approval to proceed for planning purposes until finalized
- Currently working to stay within FY 2000 and FY 2001 Guidelines

- Deliverables Documents baselined and delivered
 - Phase II Flight Safety Data Chapter (ESA Biopack)
 - Section II of ESA Pyle ADP
 - Phase II Flight Safety Data Package (AEMs)
 - Phase II Ground Safety Data Package (AEMs)
 - Experiment Requirements Document (Delp)
 - Experiment Requirements Document (Holstein)
 - Experiment Requirements Document (Gabrion)
 - Experiment Requirements Document (Pyle)

- Project Requirements
 - Project Management Requirements
 - Sufficient resources (funds and personnel) shall be provided to maximize probability of mission success:
 - ▲ Status: Sufficient funds and personnel available for FY2000
 - Project planning shall be conducted to maximize probability of mission success.
 - ▲ Status: Completed Project Schedules, Risk Management Plan; remaining products in progress

- Project Requirements (Continued)
 - Science Requirements
 - Experiment designs shall be defined
 - **▲ Status: Complete Experiment Requirements Document baselined**
 - Experiment design shall be approved
 - ▲ Status: ARC Life Sciences Division Project Control Board review 5/18/00.
 - On-Orbit operations shall be conducted
 - Experiment data shall be disseminated to PI teams

- Project Requirements (Continued)
 - AEM/Biopack Hardware Requirements
 - AEM H/W design and operations shall meet science requirements as defined in individual Experiment Requirements Documents.
 - **▲ Status: Work in progress**
 - ◆ AEM CO₂ System shall provide the crew with a safe and rapid means of euthanizing rodents in the event of an animal crisis.
 - **▲** Status: Work in progress
 - Biopack hardware shall meet science requirements as defined in the ERD
 - **▲ Status: Work in progress**

- Project Requirements (Continued)
 - Operations Requirements
 - Hardware shall be fabricated, modified, and refurbished to meet objectives identified in the Experiment Requirement Documents.
 - **▲** Status: Work in progress
 - Hardware shall be prepared to support crew training.
 - **▲** Status: Schedule impacted by hardware modifications
 - Training of crew shall be supported by STS-107 Fundamental Biology Project personnel.
 - **▲** Status: Schedule impacted by hardware modifications
 - Safety Requirements
 - **◆** The identification and mitigation of hazards shall be accomplished to achieve mission success for the STS-107 SPACEHAB mission.
 - **▲ Status: Work in progress**

Challenges

- Indeterminate status of two PIs.
 - Chapes is being considered for manifesting and is an unknown risk for support at this late date.
 - Vandenburgh is on reserve and risk of supporting manifesting increases with time.
- Change in scope of project by inclusion of CO₂ system and Inflight Refill Unit and back-up unit.
 - Significant increase in stowage requirements and cost.
 - Meeting SPACEHAB deliverables.

Acronym list

ACOS- AEM CO2 System EEOM- Early End of Mission

AEM - Animal Enclosure Module ELISA- Enzyme-linked immunosorbent assay

ARC- Ames Research Center ERD-Experiment Requirements Document

ASSY-Assembly ESA- Europen Space Agency

ARF- Aquatic Research Facility EST- Experiment Sequence Test

ATP- Adenosine Triphosphate EUE- Experiment Unique Equipment

BRIC- Biological Research In Cannisters

EVT- Experimental Verification Test

BRIC-LED- Biological Research in Canisters-Light Emitting Diode FDS- Fixative Delivery System

cCMP-Guanosine Cycline Monophoshate FAM- Familiarization (BRIEFING)

CCM- Cell Culture Module FD- Flight Day

CDMS- Command Data Management System FO- Functional Objective

CDR- Critical Design Review FPU-Fluid Pumping Unit

CIS-Camera Illumination System FRESH- Fundamental Rodent Experiments Supporting Health

CM-Centimeter FRR- Flight Readiness Review

CO2-Carbon Dioxide FTR- Facilities Trial Run

CRIT- Criteria g- Gravity

CSA- Canadian Space Agency GCU- Generic Containment Unit

CSF- Cerebral Spinal Fluid GES- Generic External Shell

CWR-Collapsible Water Reservoir HGMF- High Gradient Magnetic Fields

DIAM-DIAMETER H/W - Hardware

DIS-Digital Imagery System

Acronym list

IACUC- Intstitutional Animal Care & Use Committee

N/A-Not Applicable

ICD- Interface Control Document

NaK- Sodium Potassium

IN-Inch NCR-Non-Conformance Reports

IRB- Institutional Review Board NET- No Earlier Than

IRU-Inflight Refill Unit

NOS- Nitric Oxide Synthase

KSC- Kennedy Space Center OBJ- Objective

Launch - Launch Minus OSRF- Oceaneering SPACEHAB Refrigerator Freezer

L+ Launch Plus PDFU's- Petri Dish Fixation Units

LIOH-Lithium Hydroxide PCB-Project Control Board

LIRD- Logisctics Integrated Requirements Document

PDR- Preliminary Design Review

LOE- Level of Effort PI- Principal Investigator

M-Meter POP- Program Operating Plan

MEDUSA- Micro-Effusion Delivery Unit for Space Applications PMR-Payload Management Review

MET- Mission Elapsed Time PSR- Pre-Ship Review

MFA -Magnetic Flux Apparatus PSRP-Payload Safety Review Panel

MFC- Magnetic Field Chamber PSI-Pounds Per Square Inch

MLE-Middeck Locker Equivalent PSIG-Pounds Per Square Inch Gauge

MMO- Mission Management Office PT-Process Traveler

MOU-Memoranum of Understanding PWQ-Process Waste Questionnaire

MSDS-Material Safety Data Sheets PVT- Payload Verification Test

Acronym list

QD-Quick Discount

QTY-Quantity

RPO- Research Program Office

R+ Recovery plus

SL- Life Science Division of Ames Research Center

SS&MA- System Safety and Mission Assurance

SORG-Shuttle Orbiter Repackaged Galley.

SPF- Specific Pathogen Free

STS- Space Transport System

SVT-Science Verification Test

SWG- Science Working Group

TAP- Test & Assembly Procedure

TBD-To be determined

TOP-Test Operating Procedure

VDC- Volt Direct Current

VIV- Vivarium

WBS- Work Breakdown Structure